

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CHEMISTRY 0620/41

Paper 4 Extended Theory

October/November 2017

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\mathbb{R}}$ IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

Cambridge Assessment
International Education

[Turn over

© UCLES 2017

Question	Answer	Marks
1(a)(i)	В	1
1(a)(ii)	A	1
1(a)(iii)	С	1
1(a)(iv)	E	1
1(b)	O ²⁻ M1 O M2 ²⁻	2

Question	Answer	Marks
2(a)(i)	s	1
2(a)(ii)	s	1
2(a)(iii)	v	1
2(b)	any value in the range 130–145 °C	1
2(c)	sublimation	1
2(d)(i)	Brownian motion	1
2(d)(ii)	nitrogen / oxygen / carbon dioxide / air molecules hit / bombard the smoke particles	1
	(the bombarding particles) move randomly	1

Question	Answer	Marks
3(a)(i)	brown / orange solid (forms / is made) OR solution becomes paler / colourless	1
3(a)(ii)	magnesium is oxidised AND copper ions are reduced OR magnesium loses electrons AND copper ions gain electrons OR magnesium increases in oxidation number AND copper decreases in oxidation number	1
3(a)(iii)	Cu ²⁺ OR copper(II) ions OR copper ions	1
	gains electrons	1
3(a)(iv)	$3Mg + Fe_2O_3 \rightarrow 3MgO + 2Fe$ M1 Fe_2O_3 AND MgO M2 fully correct	2
3(b)(i)	prevents air / oxygen AND water from reaching the steel	1
3(b)(ii)	magnesium is more reactive than iron / steel	1
	the magnesium corrodes (before the iron / steel) OR the magnesium corrodes preferentially	1
3(b)(iii)	copper is less reactive than iron / steel	1

0620/41

Question	Answer	Marks
4(a)(i)	ightarrow 2(C ₂ H ₅ OH) + 2CO ₂ M1 carbon dioxide made as product M2 balanced	2
4(a)(ii)	any 2 from: 37 °C anaerobic glucose is aqueous yeast	2
4(b)(i)	(concentrated) phosphoric acid	1
4(b)(ii)	92 If full credit is not awarded, allow 1 mark for M_r of ethene = 28	2
4(c)(i)	(acidified) potassium manganate(VII) OR potassium (di)chromate(VI)	1
4(c)(ii)		3
	 M1 all shared pairs of electrons correct for single bonds M2 2 shared pairs of electrons for the C=O bond M3 total of 8 electrons on each O including 4 non-bonding electrons and no additional non-bonding electrons 	
4(d)(i)	partially ionised / dissociated	1

0620/41

Cambridge IGCSE – Mark Scheme **PUBLISHED**

October/November 2017

Question	Answer	Marks
4(d)(ii)	M1 (acids) have same concentration	1
	 M2: measure pH OR describe how to measure pH (such as use Universal Indicator) M3: lower pH corresponds to the stronger acid / hydrochloric acid OR M2: add calcium / magnesium / zinc / iron M3: faster rate of forming bubbles corresponds to the stronger acid / hydrochloric acid OR M2: rate of reaction with (metal) carbonate M3: faster rate of forming bubbles corresponds to the stronger acid / hydrochloric acid OR M2: rate of reaction with (named) metal oxide M3: dissolves faster means that reaction is with the stronger acid / hydrochloric acid OR M2: electrical conductivity M3: greater conductivity corresponds to the stronger acid / hydrochloric acid OR M2: add sodium hydroxide (or other named alkali) M3: greater temperature change corresponds to the stronger acid / hydrochloric acid 	2
4(e)	structure of propanoic acid	1
	propanoic acid	1
	structure of butan-1-ol	1
	butan-1-ol	1

© UCLES 2017 Page 5 of 8

Question	Answer	Marks
5(a)(i)	start colour: green end colour: black	1
5(a)(ii)	$CuCO_3 \rightarrow CuO + CO_2$	1
5(b)(i)	(copper(II) ions) add sodium hydroxide (solution)	1
	(copper(II) ions) blue ppt.	1
	(nitrate ions) add aluminium AND aqueous sodium hydroxide AND warm	1
	ammonia given off / gas turns damp (red) litmus blue	1
5(b)(ii)	2/2/4/1	1
5(c)(i)	becomes paler	1
	equilibrium moves right	1
	(because) fewer moles (of gas) on right	1
5(c)(ii)	equilibrium moved right / more N ₂ O ₄ / less NO ₂	1
	(forward) reaction exothermic	1

Question	Answer	Marks
6(a)	aluminium is more reactive than carbon	1
6(b)(i)	oxide ion has an outer shell with six <u>dots</u> and two <u>crosses</u>	1
	oxide ion has a charge of 2 ⁻	1

Question	Answer	Marks
6(b)(ii)	(electrostatic) forces of attraction between ions	1
	(are) strong OR require lots of energy to overcome	1
6(c)(i)	the wires: electrons	1
	the electrolyte: ions	1
6(c)(ii)	any 2 from: increases conductivity as a solvent lowers the operating temperature	2
6(c)(iii)	$Al^{3+} + 3e^- \rightarrow Al$	1
6(c)(iv)	oxygen is made at the anode	1
	the anodes are made of carbon	1
	oxygen (made) reacts with carbon	1
6(d)	aluminium coated with layer of (unreactive) aluminium oxide	1

Question	Answer	Marks
7(a)(i)	more particles (of acid) in a given volume / dm³ / cm³	1
	more collisions per second / unit time OR greater collision rate	1

0620/41

Question	Answer	Marks
7(a)(ii)	particles have more energy / particles move faster / more collisions per second / more collisions per unit time / greater collision rate	1
	more (of the) particles / collisions have energy greater than the activation energy / more particles have sufficient energy to react / more collisions have sufficient energy to react / a greater percentage of collisions are successful	1
7(b)(i)	0.075 If full credit is not awarded, allow 1 mark for $M_{\rm r}$ of CuO = 80	2
7(b)(ii)	0.05	1
7(b)(iii)	4 (g) M1 moles copper(II) oxide that reacted = $(0.05/2) = 0.025$ mol M2 mass copper(II) oxide = $((0.075 - 0.025) \cdot 80) = 4$ g	2
7(c)	C l ₂ CuH ₄ O ₂ M1 41.52 / 35.5; 37.43 / 64; 2.34 / 1; 18.71 / 16 OR 1.17 : 0.58 : 2.34 : 1.17 M2 appropriate scaling to give whole number ratios	2